Ученые МФТИ создали "орган чувств" для биосенсоров из меди и оксида графена

Российские учёные из Московского физико-технического института разработали биосенсорные чипы беспрецедентно высокой чувствительности на основе меди вместо традиционного для таких устройств золота. Такая замена не только несколько снизит цену, но и существенно облегчит производство биосенсоров с технологической точки зрения.

Результаты исследования представлены в журнале Langmuir, получившем название в честь американского химика Ирвинга Ленгмюра, который получил Нобелевскую премию по химии 1932 года "за открытия и исследования в области химии поверхностных явлений".

В настоящее время биосенсорные чипы используются ведущими фармацевтическими компаниями для разработки всех видов лекарств. Такие чипы являются незаменимым инструментом для изучения кинетики молекулярных взаимодействий, а ещё они могут стать основой всевозможных химических анализаторов — для выявления опасных веществ в окружающей среде или продуктах питания, поиска молекул-маркеров заболеваний, обнаружения утечек в химической промышленности и т. п.

Ключевой особенностью разработки российских учёных из лаборатории нанооптики и плазмоники Центра фотоники и двумерных материалов МФТИ является использование при создании основного чувствительного элемента биосенсора таких материалов, как медь и оксид графена. Это позволило достичь беспрецедентной чувствительности без значительных изменений в конфигурации биосенсорного чипа, что делает его совместимым с существующими коммерческими биосенсорами, например, такими как Biacore, Reichert, BioNavis или BiOptix..

"Наша разработка — важный этап в развитии технологии производства биологических сенсоров, основанных на фотонных и электронных технологиях, — говорит Валентин Волков, руководитель лаборатории нанооптики и плазмоники МФТИ. — Взяв за основу стандартные технологические процессы и медь, объединив их с таким перспективным материалом, как оксид графена, мы продемонстрировали их высокую эффективность и тем самым открыли новое направление исследований в области разработки биологических сенсоров".

Золото — традиционный материал для оптоэлектроники и фотоники. Чувствительный элемент практически всех коммерческих биосенсоров включает золотые плёнки толщиной несколько десятков нанометров. Причины этому — отличные оптические свойства золота и его высокая химическая стабильность. Но у золота есть и серьёзные недостатки. Во-первых, его высокая стоимость. Если сравнивать высокочистые материалы, то золото более чем в 25 раз дороже меди. Во-вторых, золото — материал, несовместимый с микроэлектронным производством, что серьёзно ограничивает массовое производство устройств на его основе.

Этих недостатков лишена медь. Она обладает оптическими свойствами не хуже золота и используется в качестве проводника электричества в современной микроэлектронике, но, что и мешало её использованию в биочипах, быстро окисляется. Проблема окисляемости меди при взаимодействии с окружающей средой была решена исследователями из МФТИ за счёт нанесения поверх металла тонкого, всего 10 нанометров, диэлектрического слоя, который также изменил оптические свойства биосенсорных чипов и сделал их более чувствительными к анализируемым объектам.

Вторая важная особенность новой разработки, позволившая добиться беспрецедентной чувствительности — использование специального слоя из оксида графена поверх медного покрытия и диэлектрика. Оксид графена впервые получен известным химиком, профессором Оксфордского университета, Бенджамином Броди ещё в 1859 году, однако в наше время этот материал фактически получил второе рождение с открытием российскими учёными из Манчестерского университета, выпускниками МФТИ Андреем Геймом и Константином Новосёловым первого двумерного материала — графена. За передовые исследования с графеном они в 2010 году получили Нобелевскую премию по физике. Оксид графена представляет собой углеродную кристаллическую решётку графена с дополнительными оксидсодержащими функциональными группами, которые были использованы в качестве устойчивых неподвижных "якорей" для прикрепления белковых молекул к поверхности. Ранее авторами данной разработки оксид графена уже был использован для увеличения чувствительности стандартных биосенсоров на основе золота. С медью этот материал также продемонстрировал высокую чувствительность.

Использование меди вместо золота в биосенсорных устройствах открывает путь к созданию компактных биосенсорных устройств для мобильных гаджетов, носимой электроники и "умной" одежды благодаря возможности производить биосенсорные чипы с помощью отработанных технологий микроэлектроники. Учёные всего мира и гиганты электронной индустрии, такие как IBM и Samsung, активно работают над созданием компактных биосенсоров, которые можно будет встраивать в электронику, подобно тому как сейчас в наших электронных устройствах присутствуют различные нано- и микроэлектромеханические сенсоры движения (акселерометры и гироскопы). Роль биосенсоров в будущем трудно переоценить, можно с уверенностью сказать, что благодаря им техника приобретёт новый, отсутствующий в настоящее время орган чувств. И в данном случае это не просто метафора: крупнейшие корпорации работают над внедрением искусственного интеллекта, созданием умных гаджетов и разработкой биоинтерфейсов, которые обеспечивают взаимодействие мозга с компьютером. Сочетание этих технологий позволит в будущем создавать полноценные кибернетические организмы.

 

Фото. Юрий Стебунов, старший научный сотрудник лаборатории нанооптики и плазмоники Центра фотоники и двумерных материалов МФТИ. Фотограф: Евгений Пелевин, пресс-служба МФТИ

"Известно, что медь не приемлет воздействия окружающей среды. Мы показали, что защитные диэлектрические плёнки толщиной всего лишь десятки нанометров не только эффективно защищают медь, но в ряде случае позволяют повысить чувствительность биосенсора, — говорит Юрий Стебунов, ведущий автор исследования и старший научный сотрудник лаборатории нанооптики и плазмоники МФТИ. — Мы не останавливаемся на чисто научных исследованиях, наша разработка до конца года станет доступной для потенциальных потребителей. Предложенные нами технологии могут быть использованы для создания миниатюрных сенсоров и нейроинтерфейсов, и это то, над чем мы сейчас работаем".

Источник

Добавить комментарий

Комментарии не должны оскорблять автора текста и других комментаторов. Содержание комментария должно быть конкретным, написанным в вежливой форме и относящимся исключительно к комментируемому тексту.


Защитный код
Обновить

Loading...

Срочные новости

Афиша Дня города

Какие увеселительные мероприятия ожидают горожан в День города? День здоровья, рок-концерт, фестивал...

Доноры требуются 26 июля

26 июля в поликлинике №1 на  Большой Волге по адресу: ул. 9 Мая, д.7 В, стр.1 состоится День до...

Строительство моста мешает волжской рыбе

В конце июня в Угличское водохранилище были выпущены 613 000 мальков стерляди. Работы были проведены...

Полтысячи нарушений противопожарного реж…

Как обычно в летнее время, в Московской области введен особый противопожарный режим. В этом году он ...

Взносы на капремонт будет собирать МосОб…

Правительство Московской области поставило управляющие компании перед фактом, что собирать платежи с...

Реклама

Объявления

Новости бизнеса

Рассрочка за изменение ВРИ помогает застройщикам

Изменение вида разрешеного использования земли - крайне попу...

Щадящая альтернатива хирургической операции

Российская компания "БЕБИГ" (резидент ОЭЗ "Дубна" - дочерн...

Ярмарка вакансий в ЦЗН

Ярмарка вакансий для граждан, ищущих работу, безработных гра...

Единая биометрическая система в РФ уже действует

Единая биометрическая система начала свое действие на террит...

Постоянная утилизация электроники проводится тольк…

 125 тонн отработавшей свое электронной техники отправл...

Мы в соц сетях

VK
ОК
FB
G+

 

Блоги

Подпишитесь на новые события нашего сайта:Подписаться