. Дубна: 15 oC
Дата 24.09.2020
В руках ученого чип с интегральными микрорезонаторами из нитрида кремния (слева) и чип лазерного диода из фосфида индия в корпусе (справа). Фото авторов исследования
В руках ученого чип с интегральными микрорезонаторами из нитрида кремния (слева) и чип лазерного диода из фосфида индия в корпусе (справа). Фото авторов исследования

Ученые из Российского квантового центра, Политехнической школы Лозанны (EPFL), МГУ и МФТИ разработали технологический процесс производства компактных лазерных химических анализаторов на базе оптических частотных гребенок, совместимый со стандартными технологическими процессами, которые используются для производства «обычной» электроники.

 

Детали разработки описаны в статье, опубликованной в журнале Nature Communications

«Вся система может уместиться в объеме менее кубического сантиметра и, что самое важное, требует источник тока мощностью лишь 1 ватт — то есть обычную батарейку. Совместимость со стандартными технологиями производства электроники, простота оптической схемы и низкая стоимость делают эту систему крайне привлекательной для массового производства», — говорит один из ведущих авторов исследования Андрей Волошин.

Оптические частотные гребенки, за создание которых в 2005 году была присуждена Нобелевская премия по физике, используются как основа для устройств, способных генерировать последовательность фемтосекундных импульсов света. Их излучение имеет спектр в виде «гребенки», то есть множества узких спектральных линий, разделенных равными частотными промежутками. Такие лазерные «линейки» можно использовать для телекоммуникации, в спутниковой навигации, в астрофизике. В частности, с их помощью можно проводить очень точные и быстрые спектроскопические измерения и, следовательно, определять химический состав веществ. Но широкое применение устройств на основе оптических гребенок ограничено из-за их сложности, большого размера и высокой стоимости.

Проще всего генерировать такие гребенки можно с помощью микрорезонаторов, «колец» или дисков из оптических материалов, где излучение лазера накачки из-за нелинейности материала превращается в частотную гребенку. Ранее группа под руководством ныне покойного профессора МГУ Михаила Городецкого, основавшего лабораторию когерентной микрооптики и радиофотоники в РКЦ, разработала метод генерации частотных гребенок  в микрорезонаторах с помощью дешевых и компактных лазерных диодов вместо дорогих монохроматических лазерных систем. Эта работа, опубликованная в Nature Photonics в 2018 году, открыла дорогу к созданию дешевых и компактных лазерных спектрометров. 

Теперь эта же группа продемонстрировала новый способ генерации гребенок с использованием исключительно интегральных элементов. Это означает, что для создания оптической схемы необязательно использовать отдельные оптические элементы, такие как линзы, призмы и зеркала, как это делалось в оптике обычно и что крайне неудобно, когда вам нужно организовать массовое производство миниатюрных оптических устройств. Современные литографические технологии позволяют создавать специальные волноводы для лучей света. Излучение лазеров может генерироваться в таких волноводах, делиться на разные каналы, проходить через специальные фильтры и так далее. Фактически маленький диод в лазерной указке и есть кусочек такого волновода. Важно, что такие волноводы могут быть изготовлены с помощью стандартной КМОП-технологии (комплементарный металл–оксид–полупроводник), используемой в промышленных масштабах для производства электронных микросхем. 

В созданном авторами статьи устройстве впервые в мире для накачки оптического микрорезонатора из нитрида кремния использовался недорогой лазерный диод. Микрорезонатор с диаметром намного меньше миллиметра имеет крайне низкий уровень потерь за счет особого метода послойного напыления — «Damascene process», сходного с методом производства дамасской стали. 

«Часть излучения, циркулировавшая внутри микрорезонатора, попадала обратно в лазерный диод, что обеспечивало быструю оптическую обратную связь. Благодаря этому процессу, который в радиофизике называют „затягиванием“, система работала как мощный стабилизированный лазер, а в микрорезонаторе генерировалась оптическая гребенка с высокой степенью когерентности и частотой 88 гигагерц», — объясняет соавтор исследования Софья Агафонова из МФТИ. 

«Простую и дешевую оптическую гребенку, которая встраивается в оптические интегральные схемы, можно использовать во многих фотонных системах нового поколения, например, в лидарах, для спектроскопии и высокоскоростной передачи данных», — замечает профессор МГУ Игорь Биленко, руководитель лаборатории РКЦ, в которой велась работа. 

В дальнейшем ученые планируют разработать компактный спектрометр, многочастотный источник узкополосного лазерного излучения. Для этого необходимо развить технологию производства фотонных интегральных устройств. 

Исследования были выполнены при финансовой поддержке Российского научного фонда.

Пресс-службы РКЦ и МФТИ

Добавить комментарий

Комментарии не должны оскорблять автора текста и других комментаторов. Содержание комментария должно быть конкретным, написанным в вежливой форме и относящимся исключительно к комментируемому тексту.


Защитный код
Обновить